
D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 1 D7.4

FP7-287811

MobiGuide

Guiding Patients Anytime Everywhere

Collaborative projects - Large-scale integrating project (IP)

Start date: 1-Nov-2011 Duration: 48 months

Deliverable 7.4: Working prototype (including PHR
with APIs, large-scale data import, KDOM extension)

Delivery due date: 31-May-2014

Actual submission date: 12-November-2014

Coordinator HU (University of Haifa)

Deliverable Leading Partner Atos

Contributing Partners ZORG, HU

Revision Version 0.13

Project co-funded by the European Commission within the Seventh Framework Programme
(2007-2013)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE
Restricted to a group specified by the consortium (including the Commission
Services)

CO
Confidential, only for members of the consortium (including the Commission
Services)

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 2 D7.4

Table of Contents

1. Executive Summary ... 5
2. DataIntegrator .. 6

2.1 Description ... 6

2.2 Status check... 7

2.3 Deployment .. 11

2.4 Folder structure .. 12
2.5 BaseX .. 12
2.6 Backup ... 13
2.7 Property files .. 13

2.8 Logs and traces .. 14
2.9 Security .. 15

3. Profile Server 3.0.0-RC5 .. 16
3.1 Introduction .. 16
3.2 Architecture overview ... 16

3.3 Rest API screenshots ... 17

3.4 Security .. 17
3.5 Requirements ... 18
3.6 Installation instructions ... 18

3.7 Configuration files .. 19
3.7.1 flyway.properties .. 19

3.7.2 configuration.properties ... 19
3.7.3 logback.xml .. 20

3.8 Update instructions .. 20

3.9 Health check status .. 20
4. Kernel server 1.1.0-RC1 .. 21

4.1 Introduction .. 21
4.2 Architecture overview ... 21
4.3 Security .. 21
4.4 Requirements ... 22

4.5 Installation instructions ... 22
4.6 Configuration files .. 23

4.6.1 configuration.properties ... 23
4.6.2 logback.xml .. 23

4.7 Update instructions .. 23

4.8 Backup and restore instructions ... 24

4.9 Health and status monitoring.. 24

4.10 Troubleshooting .. 24
5. KDOM (HU) .. 25

5.1 Introduction .. 25
5.2 Requirements ... 27
5.3 Deployment .. 27

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 3 D7.4

5.4 Configuration Files ... 29

5.5 Logs and traces .. 29
5.6 Security .. 30
5.7 KDOM client side GUI application - manual ... 30

5.7.1 Screens ... 30

List of Figures

Figure 1: MobiGuide general Architecture (in red, the DataIntegrator component) 5

Figure 2: Example of successful response to the DI check ... 6

Figure 3: CCP main page .. 8

Figure 4: CCP executeQuery example .. 9

Figure 5: VMR of a patient returned by the CCP ... 9

Figure 6: Examples of different fields values on the CCP ... 10

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 4 D7.4

1. Executive Summary

The present deliverable is a technical report of the DataIntegrator, Kernel and KDOM

components, intended to be used as a manual for deployment and maintenance of such

component. It will not address any of the components internal details, as these have

been already covered in other deliverables. Its target audience includes future

MobiGuide IT system administrators and System Integrators.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 5 D7.4

2. DataIntegrator

2.1 Description

The DataIntegrator is a Java-based application which serves as the access-point to the

PHR for the MobiGuide components’ sake. The following picture shows it within the

general MobiGuide Architecture:

Figure 1: MobiGuide general Architecture (in red, the DataIntegrator component)

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 6 D7.4

It enables the access to the data of the system by providing a uniform, VMR-based API

which is accessible via HTTP calls. These calls can be roughly divided into three

categories:

1. Calls to insert data into the PHR. They are accessible through the

RegisterVMRDataIF interface.

2. Calls to retrieve data from the PHR. They are accessible through the

RetrieveVMRDataIF interface.

3. Calls to Data Notification subscription subsystem. They are accessible through

the DataSubscriptionIF interface.

2.2 Status check

All these interfaces must be operative to ensure that the DataIntegrator is working

properly. The easiest way to check the DataIntegrator status is to call the following URL:

https://<SERVER>/DataIntegrator/services/RetrieveVMRDataIF/execu

teQuery?source=GUI&userid=<USER>&mgid=<MGID>&xQuery=db:open("PHR

", "<MGID>.xml")/*:vmr&response=application/xml

where:

 <SERVER> is the server where the DataIntegrator has been deployed

 <USER> is a valid USER ID that is on PiiHub DataBase

 <MGID> is a valid MGID of a patient who has been already enrolled into MobiGuide

The expected result of such a call would be the following:

<ns:executeQueryResponse

xmlns:ns="http://interfaces.dataintegrator.atos.mobiguide">

 <ns:return>

 <mg_di:diResponse

xmlns:mg_di="http://mobiguide.atosresearch.eu/dataIntegrator">

 <mg_di:result>OK</mg_di:result>

 <mg_di:message>Query successfully

executed</mg_di:message>

 <mg_di:additionalInfo>

 <__VMR HERE__>

 </mg_di:additionalInfo>

 </mg_di:diResponse>

 </ns:return>

</ns:executeQueryResponse>

Figure 2: Example of successful response to the DI check

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 7 D7.4

with the <__VMR HERE__> tag being replaced by the full content of the patients VMR

(only non-demographic information).

This successful call implies that:

1. The DataIntegrator server is up and running

2. The DataIntegrator is able to receive calls from the components

3. The DataIntegrator is able to access the PHR

4. The DataIntegrator is able to access the PiiHub component

This call, however, does not check:

1. If the DataNotification subsystem is working

2. If the data in the PHR is correct

3. If the demographic data in the ZORG kernel is accessible

These other conditions will have to be checked one by one afterwards. For the

DataNotification, the collaboration of DSS, KDOM and Mediator components is needed,

as a whole round of subscription insertion of data checking of the notification loop

is required.

The correction of PHR data is more difficult to perform, as the DI only checks that the

PHR data is syntactically correct. The semantic correctness is impossible to check in an

automated way, as it requires validation by clinical experts.

Regarding the connection with the ZORG kernel, a call to the getDemographics method

on a previously enrolled patient should be enough to check it.

For performing such calls the DataIntegrator contains a built-in functionality named CCP

(Program Control Center), whose main page is shown on Figure 3.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 8 D7.4

Figure 3: CCP main page

The CCP is a HTML+JavaScript web page which contains all the methods of the

DataIntegrator and several examples of its attributes. By changing the “METHOD” drop-

down list, the attributes of each one of the methods are shown along with concrete

values for them, which eases the process of testing DataIntegrator functionality.

The CCP is strictly a development tool, not intended to be used during production

phases of the project, but it can be useful for checking DataIntegrator status.

The URL for accessing CCP is -

https://<server>/DataIntegrator/html/lanzadera_crossbrowser.html being <SERVER>

the name/IP of the machine where the DataIntegrator instance is being running. Once

the user is authenticated and the page is loaded, the easiest way to check if the DI is

running is by selecting:

 SERVICE: RetrieveVMRDataIF

 METHOD: executeQuery

Just by doing this, the CCP should show a list of all the patients enrolled so far in the

system, identified by their MGID (see Figure 4).

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 9 D7.4

Figure 4: CCP executeQuery example

If the list is empty is because there is no patients enrolled within the system or because

there has been some error in the connection between the CCP and the DataIntegrator.

Once one of the patients is selected and the user has clicked on lower button, the entire

XML of the patients is returned (see Figure 5).

Figure 5: VMR of a patient returned by the CCP

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 10 D7.4

By changing the xQuery of CCP, different actions or searches can be performed over

the VMR of the selected patient (or a list of them). Any other of the DataIntegrator

methods (enrolling a patient, disbanding a patient, notify of changes on data, etc.) can

be achieved by selecting the appropriate menus of the CCP.

On the most used cases, the CCP provides an additional drop-down list on the right part

of the page, which fills the fields with working examples of them.

Figure 6: Examples of different fields values on the CCP

In the example given (see Figure 6), if the user selects “Get Full VMR” from the drop-

down list, the CCP fills the xQuery field with the value “db:open("PHR",

"0288f5b946f83fec4e639b1125684b90bcb8b8ba.xml")/*:vmr”, thus saving typing time

from the user.

2.3 Deployment

Usually the DataIntegrator is deployed as a WAR application. On both environments

used in MobiGuide, this WAR was deployed on a regular Apache Tomcat v7.0.47

running on a Linux machine, although it could be used on other web servers/servlets

containers (not tested) as well.

On both Hospitals environment the installation of a new version of the WAR is usually

done by stopping the tomcat instance, replacing the WAR and starting it again, although

the possibility of a hot deployment has been already tested and it should work.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 11 D7.4

2.4 Folder structure

In MobiGuide, two environments were set up for each one of the pilots. As the

Architecture solution chosen is based on Virtual Machines, the result is that both

environments share the same structure.

Regarding the DataIntegrator specific case, there is a dedicated Virtual Machine for it

on each one of the separated environments, both of them remotely accessible by VPN

connections.

Once logged in, what can be found there is the following folder structure:

 Folder /opt/apache-tomcat-7.0.47. This is the root folder for the Tomcat

installation

 Folder /opt/apache-tomcat-7.0.47/bin. This is the folder where the

startup/shutdown scripts are located

 Folder /opt/apache-tomcat-7.0.47/webapps. This is the deployment folder, where

the WARs are located and also where they are deployed. Besides the

DataIntegrator and BaseX WARs, it also contains the JavaDoc of DataIntegrator

API.

 Folder /var/log/tomcat. This is the folder where DataIntegrator logs are written.

2.5 BaseX

Along with the DataIntegrator, a BaseX instance is provided to serve as PHR for the

non-demographic data storage. BaseX is a XML-based database which can be set up in

several ways. The one used within MobiGuide is by deployment a BaseX WAR on the

same folder as the DataIntegrator, as this only action enables all of the BaseX storage

capabilities that will be used in the project.

During BaseX deployment, the Database starts a process on local port 1984, which

should be free for its use. During upgrades on BaseX database is quite common that a

hot replacement of the WAR causes this process to hang, which could block further

deployments. To fix this, is necessary to stop Tomcat server, entirely delete the BaseX

instance (which, of course, empties the PHR Database of patients), manually kill any

BaseX process, copy the new BaseX WAR and start the Tomcat again.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 12 D7.4

2.6 Backup

Periodic backups should be performed on the BaseX database following instructions of

http://docs.basex.org/wiki/Backups. This is basically done by invoking the CREATE

BACKUP command over PHR database. The need for a backup comes from the local

laws (Implementing regulation (RLOPD) of December 21 st 2007 -Art. 102 and the

Legislative Decree no. 196 of 30 June 2003) described in the D8.1 Security and Privacy

Analysis in MobiGuide.

2.7 Property files

The DataIntegrator property files are located on “conf” folder within the deployment

folder structure. There can be found the following files:

1. dataintegrator.properties. This is the main configuration file and contains

several items with can be modified to change DataIntegrator behaviour:

 general.sources. This is a list of the different modules that are accepted as

valid DI callers.

 general.basex.access. This is the way that the DI uses to connect to the

underlying BaseX DataBase. 1 means REST services, 2 Java Client and 3

XQJ

 general.enhancedParametersLog. This enables a more verbose log on the

parameters part

 general.phr.basex.serverName/path/port/dbname/usuarioAdmin/claveAdmin/

usuario/clave. Those are the parameters to connect to the underlying BaseX

DataBase.

 general.debugsec. This enables a more verbose log on security part

 general.idp.activate. This is a switch that enables/disables the use of IDP

security component

 general.idp.server/port/path. Those are the parameters to access the IDP

security component

 general.piihub.activate. This is a switch that enables/disables the use of

PiiHub security component

 general.piihub.server/port/path. Those are the parameters to access the

PiiHub security component

 general.piihub.trustStore.path/pass. This is the access path (and password)

to the TrustStore where the certificates are stored

 general.piihub.keyStore.path/pass. This is the access path (and password) to

the KeyStore where the certificates are stored

http://docs.basex.org/wiki/Backups

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 13 D7.4

 general.emr.pavia.server/port/path. In the case of FSM EMR, those are the

parameters to connect to its webservice

 general.emr.sabadell.pathtofiles. In the case of Sabadell EMR, this is the path

to where the EMR files are located.

 general.kernel.enable. This is a switch that enables/disables the use of ZG

kernel component

 general.kernel.server/path. Those are the parameters to access ZG kernel

component

2. log4j.properties. This file contains the configuration information of the Log4j

system.

3. skeleton.xml. This is a template xml for the creation of the VMR.

2.8 Logs and traces

The DataIntegrator contains a fully working logging system that will enable a system

administrator to detect errors on the normal functioning of the MobiGuide system. The

log4j.properties file can be modified to provide more detailed logs. For now, six log files

are configured:

 DataIntegrator.log. This file contains all the logs generated by the application. It

should only be enabled during testing, as it can significantly affect the

performance.

 DataIntegratorMG.log. This file contains all the logs generated exclusively by

the DataIntegrator packages and the classes called from them. It can be disabled

during production.

 DataIntegratorErr.log. This file only contains the errors and warnings generated

by the application. It should be examined from time to time to ensure that there

are no significant errors.

 DataIntegratorSummary.log. This file contains a summary of the calls done to

the DataIntegrator by external components. It can be useful for system

administrator as it shows a trace of the actions of the entire MobiGuide system

(that involve the DI)

 DataIntegratorNotifier.log. This is a file that only contains the Notifier

subsystem logs, so they can be examined differently from the rest of the system.

 DataIntegratorPerformance.log. This file contains the execution times of each

of the calls received by the DataIntegrator and also those done by it to external

system. It can be used to detect bottlenecks and reasons for low performance.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 14 D7.4

In addition to these logs, the DataIntegrator sends a special trace to the Security

components for audit logs: each time a component tries to access the PHR data, this is

recorded. Such traces can be seen later on the Security components console.

2.9 Security

All the connections to/from the DataIntegrator are done through SSL/HTTPs secure

channels. The DataIntegrator will not accept calls coming through unsecure channels,

which is done relying on the Tomcat container security.

Following security recommendations, the demographic and non-demographic calls are

separated at all levels, including the physical, as they are stored on the kernel

component (demographic data) and the BaseX DataBase (non-demographic data). The

BaseX DataBase includes no encryption capabilities, so some adequate protection

should be provided on its files at the Operating System level. Following Security

Directives, the entire Virtual Machine should be then encrypted by using Linux built-in

capabilities.

Regarding the DI internal MySQL DataBase, it only stores notification subsystem-

related data, so no additional security is needed.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 15 D7.4

3. Profile Server 3.0.0-RC5

3.1 Introduction

This document describes how to install the profile server version 3.0.0-RC5 as in use by

the MobiGuide project. The profile server stores the demographics information and is

used as storage backend for the MobiGuide

server.

3.2 Architecture overview

The system used by MobiGuide consists of the

following components:

• Postgresql server

• profile server

• MobiGuide server

The profile server takes care of storing and

retrieving demographic information in the

PostgreSQL server.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 16 D7.4

3.3 Rest API screenshots

3.4 Security

The profile server does not provide any means of restricting access itself. It is up to the

systems administrator to restrict the access to the database and the REST API of the

profile server when needed by using the methods provided by the operating system,

postgresql, tomcat and/or a firewall.

For the MobiGuide project the profile server is only accessible by the MobiGuide server.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 17 D7.4

3.5 Requirements

The profile server is tested using the following configuration:

 Ubuntu 12.04

 PostgreSQL 9.3

 Tomcat 7.0.34

However, the profile server does work with other operating systems, application servers

and other versions of PostgreSQL.

3.6 Installation instructions

The easiest way to install the profile server is by installing the provided Debian package.

This package works on most Debian based Linux distributions, including vanilla Debian.

The Debian package assumes a working Tomcat installation using the default location

(/var/lib/tomcat7/webapps) for deploying WAR files. If using the Debian package based

installation method is not an option, the WAR file can be deployed manually.

Use the following steps to install the profile server:

 install the Debian package

dpkg -i mv-profile3-3.0.0-RC5.deb

Because no configuration exists, the installation will end with a warning the

configuration does not exist yet.

 create the database

 cat <<EOF | sudo -u postgresql psql

 CREATE ROLE profile3 WITH LOGIN PASSWORD 'profile3';

 CREATE DATABASE profile3 ENCODING 'UTF-8' TEMPLATE template0;

 GRANT ALL PRIVILEGES ON DATABASE profile3 TO profile3;

EOF

 configure the profile server

Several example configuration files (see following section for detailed description) are

created in /etc/medvision360/profile3

Copy these templates and modify them as needed and run the setup script again:

 cd /etc/medvision360/profile3

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 18 D7.4

 for i in *in; do cp $i `basename $i .in`; done

 vi configuration.properties

 vi flyway.properties

 vi logback.xml

/var/lib/dpkg/info/mv-profile3.postinst

 restart tomcat7

 After every change of the configuration file tomcat needs to be restarted:

service tomcat7 restart

3.7 Configuration files

The profile server uses the following configuration files:

3.7.1 flyway.properties

 This configuration file is used during installation and upgrade of the profile server

to migrate the database to a newer version. It contains information, which is used

to connect to the database. If the database is created using the default names

and passwords, the template version provided by the installer is correct.

 The most important options in this file are: flyway.url, flyway.user and

flyway.password

 These options are explained in the comments surrounding these options in the

configuration file.

3.7.2 configuration.properties

This file contains the configuration of the profile server and must be modified as

needed:

option description suggested value

jdbc.user

The database user used
to connect to the
database

profile3

jdbc.password
The password used to
connect to the database

profile3

jdbc.url
The location of the
database

jdbc.url=jdbc:postgresql://l

ocalhost/profile3

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 19 D7.4

lib.server.config.logbackc

onfigfile

The location of the
logging configuration file

/etc/medvision360/profile3/l

ogback.xml

gaping.hole.bypass.google.

for

Unused option left in for
compatibility reasons.

3.7.3 logback.xml

 By default this file configures the profile server to create two logfiles. These

logfiles are /var/log/medvision360/profile3/errors.log and

/var/log/medvision360/profile3/access.log

 The errors.log file contains generic log messages of the server. The access.log

file contains an Apache like access log.

 By default the log level is set to debug, the logfiles are rotated every day and

deleted after 30 days. Please see the logback manual for more information on

how to configure logging.

3.8 Update instructions

 To upgrade the application, follow the normal installation instructions and install

the new Debian package over the old version. The Debian package will take care

of migrating the database if needed.

 When upgrading it is not necessary to alter the configuration files or run the

install script manually.

 It is recommended to periodically backup the PostgreSQL database. This can be

done by using tools like autopostgresqlbackup

 There are no special instructions required regarding backing up or restoring data.

3.9 Health check status

 To check if the system is running point a webbrowser at:

http://<yourserver>:<yourport>/profile3/apidocs/

 The webbrowser should open the API documentation and provide means to test

the APIs.

https://packages.debian.org/stable/admin/autopostgresqlbackup

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 20 D7.4

4. Kernel server 1.1.0-RC1

4.1 Introduction

This document describes how to install the ZORG Kernel version 1.1.0-RC1 as in use

by the MobiGuide project. The MobiGuide server converts the XML files from the data

integrator and allows the demographic data to be

stored in the profile server.

4.2 Architecture overview

The system used by MobiGuide consists of the

following components:

 Postgresql server

 profile server

 MobiGuide server

4.3 Security

The MobiGuide server (Kernel) does not provide

any means of restricting access. It is up to the

systems administrator to restrict the access to

the REST API of the MobiGuide server when

needed by using the methods provided by the

operating system, tomcat and/or a firewall.

SSL protection is provided by an Apache proxy in front of tomcat. This Apache proxy

only allows connections using a valid SSL client certificate to pass. Setting up this

Apache proxy is beyond the scope of this document and depends on the available

infrastructure and certificate provider.

Details about the installation process on the FSM servers can be found in MedVision’s

MobiGuide Run Book and

MP-5 - Installation our software on the new virtual server in the hospital REVIEW.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 21 D7.4

4.4 Requirements

The profile server is tested using the following configuration:

 Ubuntu 12.04

 Tomcat 7.0.34

However, the MobiGuide server does work with other operating systems and application

servers.

4.5 Installation instructions

The easiest way to install the MobiGuide server is by installing the provided Debian

package. This package works on most Debian based Linux distributions, including

vanilla Debian.

The Debian package assumes a working Tomcat installation using the default location

(/var/lib/tomcat7/webapps) for deploying WAR files. If using the Debian package based

installation method is not an option, the WAR file can be deployed manually.

Use the following steps to install the profile server:

 install the Debian package

dpkg -i mv-mgserver-1.1.0-rc1.deb

 configure the mobiguide server

Several example configuration files are created in /etc/medvision360/mgserver

(see more detailed description in the following section). Copy these templates and

modify them as needed:

 cd /etc/medvision360/mgserver

 for i in *in; do cp $i `basename $i .in`; done

 vi configuration.properties

vi logback.xml

 restart tomcat7

After every change of the configuration file tomcat needs to be restarted:

service tomcat7 restart

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 22 D7.4

4.6 Configuration files

The MobiGuide server uses the following configuration files:

4.6.1 configuration.properties

This file contains the configuration of the mobiguide server and must be modified as

needed:

option description suggested value

profile3.url
The base URL
where the profile3
server is located.

none

lib.server.config.logbackconfigf

ile

The location of the
logging
configuration file

/etc/medvision360/mgserver/log

back.xml

4.6.2 logback.xml

 By default this file configures the profile server to create two logfiles. These

logfiles are /var/log/medvision360/mgserver/errors.log and

/var/log/medvision360/mgserver/access.log

 The errors.log file contains generic log messages of the server. The

access.log file contains an Apache like access log.

 By default the log level is set to debug, the logfiles are rotated every day and

deleted after 30 days. Please see the logback manual for more information on

how to configure logging.

4.7 Update instructions

 To upgrade the application, follow the normal installation instructions and install

the new Debian package over the old version.

 When upgrading it is not necessary to alter the configuration files.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 23 D7.4

4.8 Backup and restore instructions

Since the MobiGuide server does not store information, there is no data, which needs to

be backed up.

4.9 Health and status monitoring

 To check if the system is running point a webbrowser at:

ttp://<yourserver>:<yourport>/mgserver/apidocs/

 The webbrowser should open the API documentation and provide means to test

the APIs.

4.10 Troubleshooting

Please check the log file /var/log/medvision360/mgserver/errors.log for

error messages. If there is nothing shown in the file, it means Tomcat failed to start the

application. In this case, check the Tomcat log files.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 24 D7.4

5. KDOM (HU)

5.1 Introduction

The Knowledge-Data Ontological Mapper (KDOM) is a Java-based application for

mapping computerized clinical guidelines to electronic medical records. In the MobiGuide

project, KDOM was implemented in the following structure:

Client Side

The KDOM is Java-based standalone application with a desktop GUI, which allows the

definition and management of mappings used in the following described services.

Server Side

The KDOM is a set of several Java-SOAP based web service (WS) applications:

• Data Retrieval Service – The Mediator component (BGU) uses KDOM for

retrieving data from the PHR files xml based database, managed by the

DataIntegrator component (Atos).

• Notifications Service – The Mediator component (BGU) uses KDOM to

subscribe for notifications regarding new data arrivals into the PHR files xml

based database, managed by the DataIntegrator component (Atos).

• KDOM Managerial Service – The KDOM GUI application uses this service to

manage the mappings used on the server side services.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 25 D7.4

Figure 5: MobiGuide general Architecture (in two red squares, the KDOM server and client sides
applications)

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 26 D7.4

5.2 Requirements

The KDOM server side application (all web-services) is using and was tested at the two

hospital sites with the following configuration:

 Ubuntu 12.04.3

 Tomcat 7.0.47

 OpenJDK Runtime Environment (IcedTea6 1.12.6) (6b27-1.12.6-

1ubuntu0.12.04.4)

It was tested also locally (University of Haifa server) with the following configuration:

 Ubuntu 13.04

 Tomcat 7.0.47

 OpenJDK Runtime Environment (IcedTea 2.4.4) (7u51-2.4.4-0ubuntu0.13.04.2)

It can be deployed (not tested) on any operating systems and application servers.

The KDOM GUI application is using and was tested on:

 Windows 7 64-bit

 Java(TM) SE Runtime Environment (build 1.8.0-b132).

5.3 Deployment

The KDOM server side is combined of several web-services, each of the services

should be deployed as a WAR application. It can be deployed without stopping the

tomcat server (hot deployment), or by stopping and starting it after the deployment (cold

deployment). Both ways were tested locally and in the two hospital sites.

In MobiGuide, the system architecture is based on several virtual machines (each for

different components). This system architecture was deployed in two environments (two

hospital sites), thus both environments share the same structure.

The KDOM server side application is deployed on a dedicated virtual machine in both

environments, it's remotely accessible by a VPN connection. The following folders

structure can be found in both environments:

 Tomcat's root folder: /opt/apache-tomcat-7.0.47.

 Tomcat's startup\shutdown scripts folder: /opt/apache-tomcat-7.0.47/bin.

 Tomcat's web-applications deployment folder: /opt/apache-tomcat-

7.0.47/webapps.

 Tomcat's logs folder: /opt/apache-tomcat-7.0.47/logs.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 27 D7.4

 KDOM's logs folder: /home/haifauni/MG/KDOM/{kdom_environment}/logs.

 {kdom_environment} is one of the following: qa, dev, prod.

 KDOM's configurations folder: {AppPath}/configurations.

Along with the KDOM server side application, a BaseX XML-based database is installed

to serve as KDOM's mappings storage. BaseX can be installed in several ways, we've

chosen the following on our Ubuntu machines:

1) Run: apt-get install basex

2) Run: basexserver start –S –p1983

The second step starts a process on local port 1983, which should be free for its use.

On BaseX update:

1) The process should be stopped with: basexserevr stop

2) Update BaseX with: apt-get

3) Run: basexserver start –S –p1983

The KDOM client side application should be installed on a machine having at least

JRE8 (build 1.8.*), because it's developed based on JavaFX. It connects to the KDOM

server side managerial WS via a VPN connection (as specified by the IT staff of each of

the hospital sites) with proper credentials and certificates, it also uses a SSH tunnel with

local port forwarding and the following configurations (set in the KDOM_GUIconfig file):

Connect FSM:

 Host: 10.7.59.121

 Port: 2255

 Protocol: SSHv2

 Tunnel local port: 9999

 Tunnel remote host: 192.168.0.5

 Tunnel remote port: 9090

Connect CSTP:

 Host: 10.24.0.30

 Port: 2255

 Protocol: SSHv2

 Tunnel local port: 9999

 Tunnel remote host: 192.168.0.5

 Tunnel remote port: 9090

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 28 D7.4

The KDOM client side application connects the KDOM Managerial WS via SSL, thus a

SSL HTTP/1.1 Connector in the Tomcat7 server.xml configuration file should be defined

on port 9090 (or any other "Tunnel remote port").

5.4 Configuration Files

The KDOM WS includes the following configuration files:

 KDOMconfig.xml configuration file, the file is within the "configurations" folder

under the deployed KDOM WS app folder. It is the main configurations file of the

application and it's scanned every 30 minutes for changes.

 Logback.xml configuration file, the file is within the "configurations" folder under

the deployed KDOM WS app folder. It configures the LOGBack framework's

default settings (e.g. Appenders) this file is scanned every 30 minutes for

changes.

The KDOM GUI includes the following configuration files:

 KDOM_GUIconfig.xml configuration file, the file should be places in the same

folder of the GUI application. The file is scanned in each GUI app execution.

5.5 Logs and traces

The KDOM server side contains a logging mechanism based on the LOGBack

framework, which allows the system administrator to detect warnings and errors of the

deployed KDOM component (by default it is configured to log warnings and errors,

could be changed in the logback.xml configuration file). Three log rolling by day files are

configured (removed automatically after 30 days):

 Kdom_login-{date}.log: This file contains logs of all KDOM's client components

that tried to use its services.

 Kdom_notification-{date}.log: This file contains logs of KDOM's notifications

subscribtion service.

 Kdom_retrieval-{date}.log: This file contains logs of the retrieval service.

 Kdom_managerial-{date}.log: This file contains logs of the managerial service.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 29 D7.4

5.6 Security

All the connections to/from the KDOM server side web-services are done through

SSL/HTTPs secure channels. The KDOM services will not accept calls coming through

unsecure channels (accomplished by Tomcat container security). Furthermore, an

OpenAM Apache Tomcat Policy Agent is installed at KDOM hospitals server side

machines. The agent filters out any unauthorized calls directed to the KDOM services.

The KDOM client side GUI application has an authentication process for its users when

they login into the application; the authentication is done by the MobiGuide IDP (Atos)

component, which returns an authentication token to be used with the policy agent.

The BaseX DB includes no encryption capabilities, so some adequate protection should

be provided on its DB files at the Operating System level. Following Security Directives,

the entire Virtual Machine should be then encrypted by using Linux built-in capabilities.

5.7 KDOM client side GUI application - manual

The KDOM client side standalone application is implemented with a desktop JavaFX

based GUI.

5.7.1 Screens

Login Screen

Execute KDOM client side application by double clicking the kdom_v#.##.jar file,

a login screen should be opened:

1

2

3

4

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 30 D7.4

1) User – The user name mandatory field, should be filled by the user to login

into the system.

2) Password – User's password mandatory field, should be filled by the user to

login into the system.

3) Choose Environment – A combo box that holds a list of all the environments

which the system can connect and manage mappings for, the user should

pick the desired environment.

4) Login - A login button. should be pressed to initiate a login process attempt.

The user (e.g. mapping definition expert) should insert her credentials (i.e. user

name & password) and choose the desired environment that he\she wants to

connect for the purpose of managing its mappings:

Mappings Management\Definition Screen (Main Screen)

After a successful login, the following mappings management\definition screen

will open; this is the main screen of the system. At first, no mapping will be

selected from the list of mappings on the left, thus no mapping definitions will be

shown in the mapping specification area on the right.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 31 D7.4

When a mapping is selected in the left mappings panel, its mapping specification

will be shown in the mapping specification area on the right:

When a node is selected in the mapping specification, its node specification will

be shown on the bottom of the screen (will slide in), the selected node will be

marked in yellow and the database (DB) XML template will be shown on the left

(will slide in):

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 32 D7.4

1) Left panel – shows a container with two sliding panels, on which the user can click

the header to open one of the following:

 Mappings - a sliding panel with a table that shows a list of all the defined mappings from

the environment the system is connected to.

 DB - It's a sliding panel with few tabs that show different information regarding the data

base (DB), which the defined mappings should map to:

 Template – A generated xml template tree view from the database XML schema

definition (XSD) file. The use can drag and drop the different elements into other parts of

the system (will be explained).

 XSD – The XML schema definition of the database that the mappings are defined to me

mapped to.

2) Dragboard – A board that shows the different node types that can be created by

dragging and dropping them into the mapping specification area. The nodes will be

shown only when a new node can be added to the mapping specification (i.e. when a

mapping is selected from the mappings table and it doesn't have unsaved changes).

All nodes can be connected to one "parent" upper node, but can be connected to

different quantity of sub-nodes according to its type:

 Query node - The main node of each mapping, its created automatically

when a new mapping is created (see the new mapping creation sequence

section) and cannot be deleted. Or can be drag and dropped into an existed

2

4

6

7

8

9

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 33 D7.4

mapping as a sub-query node (see the root query and sub- query section).

Can be connected to one sub node.

 Header node – A node that can be connected to one sub-node, it's a logic

condition definition node on a sub tree of nodes (e.g. to add a negation logic

of "not" to a sub tree of nodes).

 AND node – A logic AND connection between sub-nodes, can be connected

to OR node – A logic OR connection between sub-nodes, can be connected

to many sub-nodes.

 1-1 node – It's a "leaf" node that cannot be connected to any sub-nodes. This

node defines a criterion for the mapping (e.g. a certain field's\attribute's value

should be bigger or equal to '3').

3) Clipboard – A board that can hold a duplication of a certain selected node by

clicking the right mouse button on a desired node that we want to duplicate copy

to clipboard. If node was copied to clipboard, it will stay there until another node

will override it. The stored node duplication in the clipboard can be drag and dropped

into the same mapping it was copied from (as a different node, but with same

specification and sub-tree of nodes), or it can be dragged and dropped into a

different mapping (by selecting a different mapping from the mappings sliding panel

on the left) and it can be copied as many times needed (each copy created new

nodes with same tree structure and specification).

4) Menu bar – A menu bar with the following options:

 File – Basic system actions:

o Print – prints current screenshot.

o Exit – Exists the system.

 Edit – Mapping management\definition actions, all actions under this menu

are the same as the buttons' actions at the right and bottom buttons areas.

Thus, please see the specification of the different buttons.

 View – View actions:

o Detailed view – Turns on\off the detailed nodes' view, a detailed

nodes view is the visual representation of all nodes of the currently

selected\opened mapping in the mapping specification area.

 Help – Help actions:

o About – systems about screen.

5) Right buttons area –

 Print – Prints current screenshot.

 Lock – Indicates if the current mapping is locked\unlocked. If it's locked,

KDOM services won't be able to use this mapping (e.g. for situations when

the mapping is in progress of refinement and it is not in its final approved

version). This button changes it's icon from a locked lock to an unlocked one

and vice versa to indicate the current locking status of the mapping.

6) Bottom buttons area –

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 34 D7.4

 Undo – Undoes the last user modification on the currently opened mapping

specification, the modification can be: a change of any attribute from the node

specification tabs, adding new node to a mapping (by dragging and dropping

from the clipboard or the dragboard etc. If there are no modifications to the

currently opened mapping, this option will be disabled.

 New Mapping – Creates a new mapping instance. If the currently opened

mapping has unsaved pending changes, this button will be disabled.

 Save Mapping– Saves any pending unsaved changes to the currently

opened mapping. If there are no unsaved pending changes, this button will

be disabled.

 Delete Mapping- Deletes currently opened mapping. I no mappings are

selected\ opened, this button will be disabled.

7) Mapping Specification – It's a draggable surface, in which the definition of a

mapping is visually constructed as a tree of nodes. The user has full control over the

mapping instance:

 Drag and drop – The user can move nodes and drag and drop new

nodes from the dragboard.

 Node selection – A node can be selected by clicking the left mouse

button on it; it will be marked with a yellow bright border. When a node

is selected, its specification sliding container will open at the bottom.

 Detailed view – The mapping can be shown in a detailed view (i.e.

each node will be surrounded with a short info of its specification), can

be turned on\off at menu bar view detailed view (see below):

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 35 D7.4

 Node menu – The user can open a node's menu by clicking the right

mouse button on it:

The menu has the following options (see below):

o Connect - For connecting the current node (i.e. node which the

"connect" option was selected on) as a "parent" upper node to a

sub-node. After clicking this option, for connecting to a sub-node

click left mouse button on the desired sub-node in the mapping

specification. If the sub-node wasn't connected to other "parent"

node, a connection between the two will be established (i.e. a line

will be drawn between the two). This option will be enabled only for

nodes that can connect to more sub-nodes then they have now (i.e.

before the current connection attempt).

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 36 D7.4

o Disconnect from – Opens a sub-menu with options to indicate

which nodes to disconnect from. Has the following options:

- Parent – will disconnect from parent node.

- Sub-nodes – will disconnect from all sub-nodes.

- All – will disconnect from parent and sub-nodes.

o Copy to – Opens a sub-menu with options to indicate the

destination of the copying. Has the following options:

- Current Mapping - Will copy the current node (i.e. node which the

"Copy to" option was selected on) to the current mapping's

specification (i.e. the node and it's sub-tree of nodes will be copied).

- Clipboard – Will copy the current node and it's sub-tree of nodes to

the clipboard.

o Remove – Deletes selected node from the current mapping.

8) Node Specification – A sliding container with several tabs which describe a specific

selected node from the mapping specification area (selected node will be marked in

yellow). The user can drag and drop elements and attributes from the mappings

sliding panel (left panel), into certain fields to fill the specification automatically (e.g.

field's path and name in the destination database, by dragging and dropping the field

element). The tabs are:

 Attributes tab – According to the selected (in the mapping specification) node's

type, its attributes will be shown at this tab. This tab is used by all node types,

and each node tab has different attributes (i.e. each node type has different

purpose\definition):

o Query node – Has the following attributes:

- Key – The primary identification unique ID of a mapping, KDOM

services will be able to recognize the mapping according to this ID

(set by the user).

- Name – The name of the mapping.

- Description – Mapping's description.

- DB Name – The destination database name, which the mapping is

mapped to.

- XML File Name – The XML file name from the database that the

mapping is mapped to.

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 37 D7.4

- Root Path – The scope\level (deep) of the xml database on which

the mapping should run.

o Header node – Has the following attributes:

- Key – A unique node identifier (set automatically by the system).

- Description – A description of the node.

- Operator - Two combo boxes that allows you to choose the

operator type and the operator itself (e.g. negation operator NOT).

o AND\OR node – Has the following attributes:

- Key - A unique node identifier (set automatically by the system).

- Description – A description of the node.

- Operator – Can chose the operator from the logical operators type

(e.g. AND, OR means that AND node can be changed to OR node

in vice versa).

o 1-1 node – A node that defines logical criterion between two fields

(i.g. fieldA < fieldB), a field to a value (e.g. fieldA < 8) or a field to a

predefined value (e.g. fieldA < $value - a placeholder to be replaced

in run time when executed by KDOM services on the server) criterion.

The actual comparison is done with a comparator that can be

selected. The fields can be drag and dropped from the database

template, the path and field name attributes will be filled automatically.

It has the following attributes:

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 38 D7.4

- Key - A unique node identifier (set automatically by the system).

- Description – A description of the node.

- Type (left field) – The left field's type (e.g. String, Integer etc.)

- Path (left field) – The left field's path.

- Name (left field) – The left field's name.

- Operator – Two combo boxes that allow to choose the operator

type and the operator itself (e.g. math operator '=').

- 2nd Field – The right field can be one of the following types: source

field (i.e. regular), value (regular value) and pre-defined, the first

field is a source field and cannot be changed.

- Type (right field) – The right field's type (e.g. String, Integer etc.)

- Path (right field) – The right field's path.

- Name (right field) – The left field's name.

 Result header fields tab – At this tab there is a table of fields definitions, can

be modified by double clicking cells in the table. This fields represent the

header fields that will be returned in the result of the execution of the

mapping against the PHR database via KDOM, they are defined in the

header tag of the template XQuery:

<KDOM-reply predifinedAttribute=AttributeValue>{ …

 Result source fields tab – At this tab there is a table of fields definitions, can

be modified by double clicking cells in the table. This field represents the

return clause of the query, and those fields will be returned for each found

concept by the defined mapping criteria (i.e. nodes tree structure).

D7.4: Working prototype (including
PHR with APIs, large-scale data import, KDOM extension)

FP7-287811 MobiGuide Page 39 D7.4

 Template query – A representation in real time (i.e. each saved change

triggers regeneration of the template query) of the mapping instance in query

language syntax. The KDOM in MobiGuide project is a mapping tool to a

XML based database, thus the querying language the template queries are

defined in is XQuery.

 In future KDOM version releases\updates, there will be support for other

querying languages and databases. The intension is to be able to support

big data solutions:

o Hadoop based solutions like Impala, Hive and HBase etc.

o Cloud based solutions like Amazon's S3Cloud with Red Shift

database etc.

9) Search – A search text box that allows the search of an item from the list of item

types in the search combo box. Currently the user can search for a certain mapping

by its ID or name. Other search capabilities can be added in future software version

releases\updates.

